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Optimization of the Basis Functions in SCF MO Calculations
Optimized One-Center SCF MO Basis Set for HCI1
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Equations have been derived which give the first derivatives of the energy, calculated by
the expansion SCF MO method, with respect to the parameters contained in the basis functions.
The amount of computations needed has a reasonable limit and is particularly reduced if the
parameters are the orbital exponents of STO basis functions. Knowledge of such derivatives
has been exployted to optimize a one center basis set, comprised of 71 STO functions, for a
SCF MO wave function of HCL. A molecular energy of —460.05810 au has been obtained at a
bond length of 2.424 au. The resulting wave function, has been used to calculate several
observables of interest.

Des équations ont été établies donnant les dérivées premiéres de I’énergie par rapport aux
paramétres des fonctions de la base utilisée dans la méthode SCF MO. La quantité de caleuls
nécessaire est raisonnablement bornée; elle est particuliérement réduite s’il s’agit des exposants
orbitaux des fonctions de base de Slater. La connaissance de ces dérivées a été utilisée pour
optimiser une base & un centre, comprenant 71 orbitales de Slater, pour la fonction d’onde
SCF MO de HCL L’énergie moléculaire obtenue est —460.05810 u.a. pour une longueur de
liaison de 2.424 a.u. La fonction d’onde résultante a été utilisée pour le caleul de plusieurs
observables intéressantes.

Ausdriicke fiir die ersten. Ableitungen der SCF-Energie nach den in den Basis-Funktionen
enthaltenen Parametern werden abgeleitet. Die zusitzlichen Rechnungen sind gering, wenn
die Parameter die Orbitalexponenten von Slater-Funktionen sind. Die Kenntnis solcher Ab-
leitungen wird dazu ausgenutzt, eine Einzentren-Basis von Slater-Funktionen fiir eine SCF-
Wellenfunktion des HCl-Molekiils zu optimieren. Die elektronische Molekiil-Energie ergab
sich zu —460.05810 AE bei einem Kernabstand von 2.424 AE. Mehrere bedeutsame Erwar-
tungswerte wurden berechnet.

Introduction

In SCF MO calculations by the expansion method the linear parameters are
fully optimized by the Roothaan procedure [15], but, as widely recognized {1, 2],
the optimization of the non:linear parameters is of paramount importance when,
as is practically always the case, the basis set is comprised of a limited number of
functions.

Unfortunately there is no general method available to perform this optimiza-
tion, and the commonly applied techniques [16, 18] are more or less based upon
brute force methods which involve a great amount of calculations.

A first step toward a more systematic and convenient approach to the problem
consists in evaluating the derivatives of the calculated energy with respect to
those non-linear parameters which are to be optimized. Knowledge of such deriva-
tives permits either the elaboration of some systematic procedure based, for in-
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stance, upon the steepest descent method, or upon a reasonable guess of the varia-
tions to be applied to the non-linear parameters.

In the next section it will be shown that the evaluation of these derivatives is
not difficult for SCF MO wave functions and the formulae become particularly
couvenient, from a computational viewpoint, if the non-linear parameters are the
orbital exponents of STO basis functions.

Finally, a OCE SCF MO [10] wave functions for HCl is presented which was
optimized with respect to the orbital exponents of the STO basis functions.

Derivation of the Equations

Here, for the sake of simplicity, closed shell cases and real basis functions are
considered.

Let us suppose we have a basis set {3} of dimensjon » and that each y; contains
an adjustable parameter «;. With this basis an SCF MO wave function may be
calculated by the Roothaan procedure, which for the system under consideration
and with a particular choice of the «’s affords an estimate of the energy Z. This
energy is given [17] by

=2H+PD|'D (1)
where
Hy = G [ h | %) (2a)
Pl =20 1 | % %) — 5 [ % | X 2> + <K M | % %3] (2b)
Dy = Zs COrs C1s(2 — 6m1) . (2¢)

Hj; is the matrix element of the one-electron part % of the hamiltonian; P¥ is
one element of symmetrized supermatrix P while Dy, are the elements of the density
matrix. The couples of indices 7, § (k, I) include all possible values without repeti-
tion arranged in a dictionary order.

The self consistent vectors C.; satisfy the equations

(H+ P D) C.s = Eg S C.s (3)
C,Z SC.p=0;sp (4)

where § is the overlap matrix.
If all the quantities appearing in the Egs. (1), (2) and (3) are analytical func-

tions of the parameters «’s, it is possible to differentiate Eqs. (1) and (4) with
respect to one of them, thereby obtaining

oF oH t oD
o ={[zaam 4+ D+P——] D + [2H + P D] —~} (5)
6C’r acp o8
C.I mcz; = O . (6)

Since
oD oD Tt
Ny )} [ i
[P-D] o [P 60@.] D
Eq. (5) becomes

oK oH or t oD
— = il el T
{[ 0 otm + 00tm D} D +2[H + PD] 30‘7/1}. (7)

O0m -
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The last equation contains the derivative of the density matrix which is rather
difficult to evaluate. Fortunately this term can be eliminated by means of the
following considerations. According to Eq. (2¢)

oD 9 Chs oCss
ot = 3 (5o O + One ) (2 = 8w ®)
Substituting this relation into Eq. (7) and using Eq. (3) and (6) results in the fol-
lowing
oE oH oP u o8 Tt
aamz{[zaam+aamD]D—2[aam] B}' ©)

B is used to designate a supervector whose elements are given by
Bij = z £s Cis Cjs (2 — dyg) « (10)
8

Eq. (9) demonstrates that the derivatives of the self-consistent energy with
respect to the parameters «’s are expressible simply by means of the derivative of
the basic integrals which explicitly depend upon the «’s. To obtain a workable
expression it is convenient to define the new matrices HY, HII, §I, SII PI PII,
PIII and PIV, The superscript indicates that these matrices are obtained from the
H, S and P matrices simply taking the derivative of each element with respect to
the parameter « of the first, second, third or fourth functions. The ordering of the
functions runs according to the convention: first, second, third and fourth fune-
tions correspond to the lower left, lower right, upper left and upper right indices.
For ingtance

a
PJIH — —— P¥. (11)

By these definitions, Eq. (9) written in detail becomes
oK
= 2{2 [Hinaim + H{,‘Iajm] + Z [Pinkléim + Piljlkl(sjm +
1=<J k<l

20m
+ PHI® 8g + PLY ¥ 851m] Dity Dij ~ 2@% [SL0im + SF 6l Dy . (12)

Exploiting the symmetry properties of the exchange of the indices of the ele-
ments of the H, §, P matrices, reduces eq. (12) to

oF
23 {|(#5+ 3, P Du) Dy — 5 By | +

0 om i<j
- [(H{f - kz<l P,‘iljlkl_Dkz> D@j —_ S,{?I Bij} 5]m}‘ . (13)

Finally upon defining the matrices GI = P! D and GII = PII D, Eq. (13) can
be written as

oK m
=2 { Z (H” + G‘U)im Dy, — ‘S’zIwI» Bim] +

9 otm =1
n
+ S (B + Glypy Dy — 8L Bmﬂ} . (14)
=m

This last equation makes it evident that for purposes of evaluating all the first
derivatives, 0E[doy, it is necessary to evaluate two more one-clectron matrices
and two more two-electron supermatrices.
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STO basis set

A particularly convenient expression is obtained if the parameters « are the
orbital exponents ¢ of a STO basis set. A STO Xy 1,2(C; 7) is defined as
. (2 £y2v+1
Xy, L,m(l;7) = [ @M
where Sz, as is a real spherical harmonic. In the case of the matrix elements of the
H, § and P matrices it is legitimate to perform the differentiation under the
integral sign. Since

] B N1 omtr S5 (8, ) (15)

o, N+1
ra In,p,m = : E v, o — v XN, (16)

it is clear that each element of the HI, H!I, §I, SII, PI and P! matrices will be
given by a sum of two terms. The first one is equal to the original element times
the factor (N + 3)/C corresponding either to the first or to the second function. The
second one differs from the original one only because the power of r of the first or
of the second function has been raised by one.
For instance
N; + —%
£y
If these last matrices are indicated by HY', HII', ST’ SII') PI’ and PI!' KEq. (14)
becomes

OF Np+il(m
o7 _ 2—i"~2{z [(H -+ G)im Dins — Sim Bim] +
08Lm I L&
n m
+ Z [(H+ G)mj ij - Smj Bm}‘]} + 2 { z [(HH’ + G"’)im Dim +
j=m 1=1
d 7’
— S Bin] + S [(HY + G¥')pg — 8T} Byl } (18)
=m

where the meaning of GI” and G1’ is evident from the previous definitions.
By using Eqgs. (2¢), (10), (3) and (4) it is not difficult to see that the first term
on the right of Eq. (18) vanishes, giving

iﬁz’_zz{

m
Cm - [(HTY + G}y Dy, — SEY Bim]+

+ $ (B + Gy Dy — 8L, ij]} : (19)
J=m

This last equation represents a convenient working formula. It requires the com-
putation of two more one-electron matrices and two more two-electron matrices,
the values of whose elements are readily obtained once we have the means for
evaluating the original basic integrals.

In fact, making slight modifications to the programs used to compute the
basic integrals, it is possible to carry out simultaneously the evaluation of the
modified integrals with very little increase in computational time. Naturally the
convenience of these modifications will depend upon the particular technique used
to evaluate the more troublesome integrals, but there are no basic difficulties
involved.

In addition, all the factorization and therefore all the organization of the SCF
program can be retained to compute Eq. (19).



12 R. Moccia:

Optimized OCE SCF MO for HC1

The evaluation of the derivative of the energy with respect to the orbital ex-
ponents of STO basis functions has been included in a program written for a
Bendix G 20 Computer.

By the use of this program a one center basis set SCF MO’s wave function for
HCI has been computed and optimized with respect to the orbital exponents .
The relevant results including the expectation values of the field gradient at the
Cl nucleus and of some electrical multipole moments are here reported.

The optimization of the basis functions, which are all located upon the Cl
nucleus, has been carried out by the following scheme: starting with a limited
basis set, which was taken to be equal to that used elsewhere (11) plus a few func-
tions of s and p type, the optimization of the ’s of such a basis was carried out
manually by a steepest descent criterion.

Table 1. Elecironic energy derivatives with respect to the orbital exponents of an intermediate
limited basis

o type 7 type

nl m ¢ OF.[00(10~%2au) n I m ¢ OF.[2L(1072 au)
1 0 0 23.990 0.0166 2 1 1 8.890 -1.2953
1 0 0 15.305 -0.0476 2 1 1 5.810 1.3612
100 10.000 ~0.0016 31 1 4.290 ~0.5833
2 0 0 8.502 -0.0138 31 1 2.350 0.1088
2 00 6.297 0.0457 31 1 1.180 ~-1.0118
2 0 0 4.000 0.0040 311 0.510 ~0.2661
3 0 0 1.767 0.0340 3 2 1 1.700 0.0030
3 00 1.404 0.0132 3 2 1 1.102 -0.0106
3 00 0.805 ~0.0089 4 2 1 1.200 0.0085
4 0 0 2.067 ~-0.1450 4 3 1 1.600 -0.0015
21 0 8.790 ~1.3857 4 3 1 1.100 ~0.0007
210 5.820 1.4349

31 0 4.350 —0.5886

31 0 2.000 —0.4093

310 1.220 ~0.2281

31 0 0.860 —0.1880

3 2 0 2.224 0.0691

3 2 0 1.492 0.0225

4 2 O 1.493 0.0383

4 3 0 1.616 —0.6563

4 3 0 2125 0.02752

Rra = 2.34 au; E.. = —467.24609 au; B = —459.98113 au

The variations ALy, were therefore chosen to be proportional to the derivatives
0B[0¢m. The proportionality constant was chosen at each step according to the
previous trend in order to avoid overshooting.

As a general rule for this case and other cases as well, it was found that a
proportionality constant K given by

=~ {a + O[S (@ B2 LT (20)
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Table 2. Results for HCl with the extended basis

Rucr = 2.424 B = —467.07130 s = —460.05810
Coefficients

nilm 1o 20 3o 40 5¢
100 23980 0.09166 0.00189  —0.00003 —0.02578 0.00897
100 15.305 1.07967 —0.20587 0.00098 0.27135 —0.09095
100 10.000 -0.22474 -0.22100 0.00074 —0.24859 0.09151
200 8502 0.11990 0.11237 0.00017 0.56940 -0.19886
200 6.297 -0.06529 0.93843 —0.00566 —1.18487 0.38862
200 4.000 0.01557 0.11949 0.00130 0.57420 —0.19952
300 1.767 —0.00284 —0.00770 0.00050 1.02584 —0.24753
300 1104 -0.00159 -0.00508 -0.00005 0.17500 -0.09601
300 0805 0.00073 0.00233 0.00000 —0.10227 0.06199
900 3419 0.00264 0.00803 —0.00012 —0.32499 0.20646
210 8885 0.00021 0.00059 0.31653 —0.01056 —0.04967
210 5725 —0.00022 0.00249 0.63172 —0.01773 -0.19011
310 4361 0.00011 0.00082 0.11804 —0.00486 0.08679
310 2004 —0.00004 0.00017 -0.02183 0.12564 0.54599
310 1.222 —0.00004 -0.00024 —0.02286 —0.00885 0.61500
310 0.862 0.00001 0.00007 0.00622 0.00370 —-0.17441
910 3.419 0.00004 0.00022 0.02737 0.05752 —0.08456
320 2224 0.00001 0.00423 0.00371 —0.00019 0.06836
320 1492 —-0.00002 —-0.00717 —0.00580 0.07935 0.05115
620 2137 0.00001 0.00332 0.00260 ~0.05934 0.02405
920 3419 0.00000 0.00081 0.00076 0.07764 013177
430 1.675 0.00000 —0.00006 0.00018 ~0.04105 -0.0157
430 2125 0.00000 0.00024 0.00070 0.03780 0.03370
930 3419 0.00000 0.00001  —0.00059 0.06759 0.11942
540 2000 0.00000 0.00020 0.00023 —-0.00107 -0.01311
940 349 0.00000 —0.00011  —0.00008 0.04053 0.09389
650 2136 0.00000 —-0.00004 -—0.00006 -0.02374 -0.03729
950 3.419 0.00000 0.00010 0.00015 0.04760 0.08541
760 2564 0.00000 —-0.00004 —0.00002 -0.03322 -0.05715
960 3.419 0.00000 0.00007 0.00008 0.04877 0.08771
970 349 0.00000 0.00002 0.00004 0.01113 0.02175
Orbital energies

(au) -104.85153 —10.57766 —8.03915 —1.12047 -0.62171
Coefficients Coefficients
nlm Atz 27t nilm 1712 2710
211 8.990 0.30703 —-0.07154 431 1.600 0.00112 0.02340
211 5.720 0.64523 —~0.19524 431 1.100 —-0.00010  —0.00454
311 4.330 0.12233 0.01423 731 2564 —0.00099 0.00311
311 2340 —0.05300 0.67714 541 1.500 —0.00003 0.00062
311 1.270 0.06102 0.43384 941 3419 0.00006 0.00989
611 2.137 —-0.07671 0.03839 651 2.136 —-0.00000 -0.00070
911 3.419 0.04082 ~0.06366 951 3.419 0.00003 0.00694:
321 1.700 -0.02731 0.02735 861 2990 0.00001 0.00382
321 1.100 0.09636 —0.01801 971 3.419 0.00001 0.00234
421 1.200 —-0.06315 0.01925 Orbital energies
721 2.564 —0.01247 0.01127 (auw) -8.03815 —0.48078
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was convenient. The numerical value of a was ~0.3 and of b ~2.0. By this method
with 7 to 8 iterations, all derivatives were reduced to the order of magnitude of
102 or less.

Tab. 1 reports the results obtained, after a few iterations, for the limited
starting basis comprised of 43 STO functions. The calculation refers to an inter-
atomic distance of 2.34 au, and a SCF total energy of —459.98113 au was ob-
tained. This value of the energy compares favorably with other calculations where
more usual polycentric basis sets were employed (12, 19).

It is necessary to point out that the described optimization was carried out by
neglecting the dependence of the {’s from the internuclear distance E. The whole
optimization process was performed for values of R around 2.4 au. Neglect of this
does not introduce serious errors because the variation of the total energy due to

Table 3. Comparison of calculated quantities with experimental data

Property Unit Present Results Nesbet (12) Experiments
R, (au) 2.426 2.5187 2.4085
Molecular Energy

E. (au) —460.05810 ~459.80514 -462.81=

(¢® E|0R?), (au) 0.540 0.2308 0.332
(]l.[l,0>e 10718 esu 1.357 (1 .32 at Re,exp) 1.488 1.081

(0 (M1,0)/0R). 10~ egu 2.065 1.718 + 0.95[14]
(M2.0) 10~ esu 4.2000 (4.047° at Reyenp) 3.957¢ 5.8 + 1.5°[21]
(8 (M2,0)/0R)s 10718 esut 6.6970 4.538¢ —

{(M3,0) 1034 esu 3.704» — —

(6 (M3,05/0R). 10-2% esu 15.640 — —

{(M4,0) 1042 esu 6.653 —_ —

(0 {(Ma,0)/0R). 103 esu 29.53v — —

{r™5 Ma0de 10~% esu 6.068 (5.95 at Re,exp) — 5.88¢

(8 5 M2,0)/0R), 10-28 esu 6.250 —

= Ag estimated in Ref. [11].

v The origin of axes coincident with the chlorine nucleus.

¢ The origin of axes coincident with the center of mass of *H33Cl.

4 The quadrupole moment @ of 35Cl nucleus was taken to be —0.07894.10~2* cm?,

reasonable changes of R are smaller than the variations considered significant for
the optimization. )

Naturally, there is no pretense being made here of presenting a set fully
optimized with respect to all the relevant parameters. Once having obtained a
fairly optimized limited basis set, an extended one was chosen without further
optimization.

It was thought that the added STO basis functions with high [ values were
needed essentialy to describe the wave functions around the proton. Therefore
the radial part of these functions expected to have its maximum value around
R = 2.4. Yor each value of I and m, two functions were added with their radial
maximum around R = 2.4 and with two different values of n.

By a few trials a satisfactory basis set was found. No attempt was undertaken
t0 minimize again the {’s, because, at this stage the basis included 74 functions,
and such a minimization was considered too expensive. Tab. 2 shows the results
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obtained with this extended basis at an internuclear distance of 2.424 au which is
very close to the value 2.426, where the interpolated minimum of the total energy
was found to be.

With the above basis the SCF calculations were performed for several values
of the internuclear distances and the resulting wave functions were used to obtain
the expectation values of the following quantities: energy, electric dipole, quad-
rupole, octupole and hexadecapole moments and the field gradient at the chlorine
nucleus.

A generic multipole moment operator My ., is conveniently defined here as

cos mp m =0

Mi,m(r, O, @) = 1% Pi,jm)(9) { (21)

sin mo m < 0
where the P; 4, are the associated Legendre functions [7].

In Tab. 3 these results and some derived quantities are reported, together with
the available Nesbet’s results [12] and experimental data.

Discussion

The calculated value of R, = 2.426 appears greater than the experimental
value of 2.4085 in contrast to the usual predictions made for the best single deter-
minant wave functions [13]. A greater discrepancy was found by NussrT [12] but
it is not clear whether this can be attributed to a still poor singl edeterminant wave
funection or to some more profound cause.

To judge the quality of the present wave function from the energy viewpoint,
it is necessary to make an estimate of the HF energy. An extremly simple way to
do this is to consider that the relativistic energy of HCI is identical to that of the
separated atoms in their ground states and that the correlation energy of HCI is
given by that of the separated atoms plus 1 eV of extra correlation due to the
pairing of the H electron [3].

According to these assumptions the HF energy of HCI, &z r(HCl), is given by
the sum of the HF energies of Cl [4] and H, minus the experimental dissociation
energy, minus the zero point energy, plus 1 eV. Thus
Egp(HCl) = —459.48187 — 0.5 — 0.1696 — 0.01362 + 0.03675 = —460.12835 au.
This value would establish that the present calculated value is still 0.07 au higher
than the true one.

This level of accuracy does not seem to justify more speculation about the
rasons why R, calculated is greater than the experimental equilibrium distance.
In addition, it is not to be forgotten that the basis was not fully optimized.

No contradiction with the prediction of [9] was found for the force constant.
The calculated value appears to be much too large and it seems doubtful whether
an optimization procedure carried out for each internuclear distance could bring
substantial improvements. The situation appears to be more encouraging for the
electric dipole moment, which has been greatly improved with respect to a more
limited monocentric basis [77]. Still high is its derivative with respect to R, but
here again it is doubtful whether a single determinant wave function is capable of
giving good results for this property.

The calculated quadrupole moment of 4.200.10-26 esu agrees well with the
recent determinated value of 5.8 £ 1.5.10-26 esu (21). This was rather unepected
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because for all the multipole moments the nuclear contributions appear to be
positive and much larger than the negative electronic contributions. Since a
OCE SCF MO wave function will probably give, in these cases, an electronic
contribution which is too small, the total results should be too large. It might be
useful however to note that the experimental determination of the multipole
moments is perhaps as delicate as their theoretical calculation.

The situation appears to be quite different for the field gradient at the chlorine
nucleus. The operator involved in this case is proportional to 3 P, , and, there-
fore, will depend strongly upon the charge distribution close to the chlorine nuc-
leus, where both the one electron approximation and the one center expansion are
at their best. The calculated value of the field gradient of 5.95.101% esu (for R equal
to the experimental value) together with the experimental quadrupole coupling
constant of gaseus 2H 35Cl of 67.3 Me/sec [5] gives an apparent quadrupole moment
for 35Cl of 0.0782.10~2% cm?. This value compares well with the experimental value
of 0.07894.10-24 as determined from the magnetic dipole interaction and electronic
quadrupole interaction constants measured from the hyperfine structure of the
2Py, ground state [6, 8].

More precisely the present calculated value should be considered an apparent
value because of the polarization effect, which could modify both the electronic
[20] and the nuclear [22] charge distributions. The closeness of this calculated,
apparent value, to the experimental one, might be variously justified, but only
actual calculation will clarify the point. The electronic polarization due to the
quadrupole moment of the nucleus, which is part of the Sternheimer effect [20],
can be calculated, within the HF scheme, by a perturbation approach.

Such a research program, which is actually under way in this laboratory, seems
to be capable of giving some reliable answer for the present as well as for other cases.
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